Abstract
Extensive allelic variation in agronomically important genes serves as the basis of rice breeding. Here, we present a comprehensive map of rice quantitative trait nucleotides (QTNs) and inferred QTN effects based on eight genome-wide association study cohorts. Population genetic analyses revealed that domestication, local adaptation and heterosis are all associated with QTN allele frequency changes. A genome navigation system, RiceNavi, was developed for QTN pyramiding and breeding route optimization, and implemented in the improvement of a widely cultivated indica variety. This work presents an efficient platform that bridges ever-increasing genomic knowledge and diverse improvement needs in rice.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
24,99 € / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
195,33 € per year
only 16,28 € per issue
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
Data availability
The raw DNA sequencing data of the QTN library are deposited with GenBank under the bioproject accession no. PRJNA623686. A web-based version of RiceNavi is available from the website http://www.xhhuanglab.cn/tool/RiceNavi.html (supporting most browsers including Chrome, Firefox and Safari, but not Internet Explorer). In this web-based application, all functions in RiceNavi (QTNmap, QTNpick, Simulation and SampleSelect) can be accessed with user-friendly graphical interfaces.
Code availability
The source code of RiceNavi is available from both our laboratory website (http://www.xhhuanglab.cn/tool/RiceNavi.html) and the GitHub repository (https://github.com/xhhuanglab/RiceNavi). The other codes for the QTN-related analyses are also provided in the GitHub repository (https://github.com/xhhuanglab/QTN_scripts).
References
Hickey, L. T. et al. Breeding crops to feed 10 billion. Nat. Biotechnol. 37, 744–754 (2019).
Takeda, S. & Matsuoka, M. Genetic approaches to crop improvement: responding to environmental and population changes. Nat. Rev. Genet. 9, 444–457 (2008).
Wallace, J. G., Rodgers-Melnick, E. & Buckler, E. S. On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics. Annu. Rev. Genet. 52, 421–444 (2018).
Hasan, M. M. et al. Marker-assisted backcrossing: a useful method for rice improvement. Biotechnol. Biotechnol. Equip. 29, 237–254 (2015).
Septiningsih, E. M. et al. Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Ann. Bot. 103, 151–160 (2009).
Singh, S. et al. Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor. Appl. Genet. 102, 1011–1015 (2001).
Suh, J.-P. et al. Development of resistant gene-pyramided japonica rice for multiple biotic stresses using molecular marker-assisted selection. Plant Breed. Biotech. 3, 333–345 (2015).
Chen, T. et al. Genetic improvement of japonica rice variety Wuyujing 3 for stripe disease resistance and eating quality by pyramiding Stv-bi and Wx-mq. Rice Sci. 23, 69–77 (2016).
Qian, Q., Guo, L., Smith, S. M. & Li, J. Breeding high-yield superior quality hybrid super rice by rational design. Natl Sci. Rev. 3, 283–294 (2016).
Zeng, D. L. et al. Rational design of high-yield and superior-quality rice. Nat. Plants 3, 17031 (2017).
Ikeda, M., Miura, K., Aya, K., Kitano, H. & Matsuoka, M. Genes offering the potential for designing yield-related traits in rice. Curr. Opin. Plant Biol. 16, 213–220 (2013).
Li, Y. et al. Rice functional genomics research: past decade and future. Mol. Plant 11, 359–380 (2018).
Huang, X. et al. A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497–501 (2012).
Knoppers, B. M., Zawati, M. H. & Senecal, K. Return of genetic testing results in the era of whole-genome sequencing. Nat. Rev. Genet. 16, 553–559 (2015).
Wang, W. et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43–49 (2018).
Yano, K. et al. GWAS with principal component analysis identifies a gene comprehensively controlling rice architecture. Proc. Natl Acad. Sci. USA 116, 21262–21267 (2019).
Yano, K. et al. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat. Genet. 48, 927–934 (2016).
Zhao, Q. et al. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat. Genet. 50, 278–284 (2018).
Ramstein, G. P., Jensen, S. E. & Buckler, E. S. Breaking the curse of dimensionality to identify causal variants in Breeding 4. Theor. Appl. Genet. 132, 559–567 (2019).
Li, X. et al. Genic and nongenic contributions to natural variation of quantitative traits in maize. Genome Res. 22, 2436–2444 (2012).
Huang, X. et al. Genomic architecture of heterosis for yield traits in rice. Nature 537, 629–633 (2016).
Huang, X. et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat. Genet. 44, 32–39 (2012).
Buckler, E. S. et al. The genetic architecture of maize flowering time. Science 325, 714–718 (2009).
Zhang, C. et al. Wx(lv), the ancestral allele of rice Waxy gene. Mol. Plant 12, 1157–1166 (2019).
Xue, W. et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40, 761–767 (2008).
Gao, Z.-Y. et al. Dissecting yield-associated loci in super hybrid rice by resequencing recombinant inbred lines and improving parental genome sequences. Proc. Natl Acad. Sci. USA 110, 14492–14497 (2013).
Qu, S. H. et al. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172, 1901–1914 (2006).
Zhao, K. et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat. Commun. 2, 467 (2011).
Huang, X. et al. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat. Commun. 6, 6258 (2015).
Xie, W. et al. Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection. Proc. Natl Acad. Sci. USA 112, E5411–E5419 (2015).
Li, X. et al. Analysis of genetic architecture and favorable allele usage of agronomic traits in a large collection of Chinese rice accessions. Sci. China Life Sci. 63, 1688–1702 (2020).
Shomura, A. et al. Deletion in a gene associated with grain size increased yields during rice domestication. Nat. Genet. 40, 1023–1028 (2008).
Fan, C. et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164–1171 (2006).
Wang, Z. Y. et al. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J. 7, 613–622 (1995).
Yano, M. et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12, 2473–2484 (2000).
Sasaki, A. et al. A mutant gibberellin-synthesis gene in rice. Nature 416, 701–702 (2002).
Huang, X. et al. Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41, 494–497 (2009).
Kojima, S. et al. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol. 43, 1096–1105 (2002).
Zhang, L. et al. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat. Commun. 8, 14789 (2017).
Wang, Y. et al. Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice. J. Exp. Bot. 66, 6035–6045 (2015).
Huang, X. et al. High-throughput genotyping by whole-genome resequencing. Genome Res. 19, 1068–1076 (2009).
Dong, H. et al. A novel tiller angle gene, TAC3, together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars. PloS Genet. 12, e1006412 (2016).
Shirasawa, K., Takeuchi, Y., Ebitani, T. & Suzuki, Y. Identification of gene for rice (Oryza sativa) seed lipoxygenase-3 involved in the generation of stale flavor and development of SNP markers for lipoxygenase-3 deficiency. Breed. Sci. 58, 169–176 (2008).
Yano, K. et al. Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with a qtl gene involved in another mechanism. Mol. Plant 8, 303–314 (2015).
Ma, Y. et al. COLD1 confers chilling tolerance in rice. Cell 160, 1209–1221 (2015).
Hu, B. et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat. Genet. 47, 834–838 (2015).
Liang, P. P., Saqib, H. S. A., Zhang, X. T., Zhang, L. S. & Tang, H. B. Single-Base resolution map of evolutionary constraints and annotation of conserved elements across major grass genomes. Genome Biol. Evol. 10, 473–488 (2018).
Joly-Lopez, Z. et al. An inferred fitness consequence map of the rice genome. Nat. Plants 6, 119–130 (2020).
Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M. & Ng, P. C. SIFT missense predictions for genomes. Nat. Protoc. 11, 1–9 (2016).
Molina, J. et al. Molecular evidence for a single evolutionary origin of domesticated rice. Proc. Natl Acad. Sci. USA 108, 8351–8356 (2011).
Choi, J. Y. et al. The rice paradox: multiple origins but single domestication in Asian rice. Mol. Biol. Evol. 34, 969–979 (2017).
Choi, J. Y. & Purugganan, M. D. Multiple origin but single domestication led to Oryza sativa. G3 (Bethesda) 8, 797–803 (2018).
Li, C. B., Zhou, A. L. & Sang, T. Rice domestication by reducing shattering. Science 311, 1936–1939 (2006).
Jin, J. et al. Genetic control of rice plant architecture under domestication. Nat. Genet. 40, 1365–1369 (2008).
Ishii, T. et al. OsLG1 regulates a closed panicle trait in domesticated rice. Nat. Genet. 45, 462–465 (2013).
Chen, S. et al. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell 20, 1850–1861 (2008).
Yu, B. et al. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J. 52, 891–898 (2007).
Lin, H., Ashikari, M., Yamanouchi, U., Sasaki, T. & Yano, M. Identification and characterization of a quantitative trait locus, Hd9, controlling heading date in rice. Breed. Sci. 52, 35–41 (2002).
Li, J. et al. A practical protocol to accelerate the breeding process of rice in semitropical and tropical regions. Breed. Sci. 65, 233–240 (2015).
Chen, J. et al. Genome-wide association analyses reveal the genetic basis of combining ability in rice. Plant Biotechnol. J. 17, 2211–2222 (2019).
Li, D. et al. Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase. Proc. Natl Acad. Sci. USA 113, E6026–E6035 (2016).
Liu, J., Li, M., Zhang, Q., Wei, X. & Huang, X. Exploring the molecular basis of heterosis for plant breeding. J. Integr. Plant Biol. 62, 287–298 (2020).
Ouyang, Y. & Zhang, Q. The molecular and evolutionary basis of reproductive isolation in plants. J. Genet. Genomics 45, 613–620 (2018).
Wang, C. S. et al. Dissecting a heterotic gene through Gradedpool-Seq mapping informs a rice-improvement strategy. Nat. Commun. 10, 2982 (2019).
Xie, Y., Shen, R., Chen, L. & Liu, Y. G. Molecular mechanisms of hybrid sterility in rice. Sci. China Life Sci. 62, 737–743 (2019).
Wei, X. et al. Domestication and geographic origin of Oryza sativa in China: insights from multilocus analysis of nucleotide variation of O. sativa and O. rufipogon. Mol. Ecol. 21, 5073–5087 (2012).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
Li, H. et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
McKenna, A. et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).
Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).
Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).
Raj, A., Stephens, M. & Pritchard, J. K. fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197, 573–589 (2014).
Chen, X. Y. et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32, 1220–1222 (2016).
Wang, D. R. et al. An imputation platform to enhance integration of rice genetic resources. Nat. Commun. 9, 3519 (2018).
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
Wilkins, O. et al. EGRINs (environmental gene regulatory influence networks) in rice that function in the response to water deficit, high temperature, and agricultural environments. Plant Cell 28, 2365–2384 (2016).
Reynoso, M. A. et al. Evolutionary flexibility in flooding response circuitry in angiosperms. Science 365, 1291–1295 (2019).
Zhao, L. et al. Integrative analysis of reference epigenomes in 20 rice varieties. Nat. Commun. 11, 2658 (2020).
Zhang, Y. et al. Model-based analysis of ChIP–Seq (MACS). Genome Biol. 9, R137 (2008).
Zhao, Q., Huang, X. H., Lin, Z. X. & Han, B. SEG-Map: a novel software for genotype calling and genetic map construction from next-generation sequencing. Rice 3, 98–102 (2010).
Voorrips, R. E. & Maliepaard, C. A. The simulation of meiosis in diploid and tetraploid organisms using various genetic models. BMC Bioinform. 13, 248 (2012).
Acknowledgements
We are grateful to the China National Rice Research Institute, Institute of Crop Sciences of Chinese Academy of Agricultural Sciences, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, Chinese Academy of Sciences Center for Excellence of Molecular Plant Sciences and Huazhong Agricultural University for providing valuable rice varieties (see Supplementary Dataset 2 for details). We thank P. Xu and J. Murray for their advice and assistance in the paper writing. This work was funded by the National Natural Science Foundation of China (grant nos. 91935301 and 31825015), Innovation Program of Shanghai Municipal Education Commission (grant no. 2017-01-07-00-02-E00039) and Program of Shanghai Academic Research Leader (grant no. 18XD1402900) to X.H. and the US National Science Foundation (Plant Genome Research Program, IOS-1947609) to K.M.O.
Author information
Authors and Affiliations
Contributions
X.H. designed these studies and contributed to the original concept of the project. X.W., K.Y., J.F., Q.Z. and H.H. contributed to the collection, planting and phenotyping of the QTN library. Q.W. and J.L. performed the genome sequencing of the QTN library and breeding populations. J.Q., X.W. and X.H. performed QTN analysis, developed the RiceNavi system and implemented RiceNavi in practical breeding. X.H., J.Q., X.W., K.M.O. and B.H. analyzed the data and wrote the paper.
Corresponding author
Ethics declarations
Competing interests
A patent on the QTN-based breeding selection method has been filed by Shanghai Normal University with X.H., X.W. and J.Q. as inventors. The remaining authors declare no competing interests.
Additional information
Peer review information Nature Genetics thanks Makoto Matsuoka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Supplementary Information
Supplementary Note, Fig. 1 and Tables 1–4
Supplementary Data
Supplementary Datasets 1–9
Rights and permissions
About this article
Cite this article
Wei, X., Qiu, J., Yong, K. et al. A quantitative genomics map of rice provides genetic insights and guides breeding. Nat Genet 53, 243–253 (2021). https://doi.org/10.1038/s41588-020-00769-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41588-020-00769-9
This article is cited by
-
Gene Pyramiding Strategies for Sink Size and Source Capacity for High-Yield Japonica Rice Breeding
Rice (2025)
-
Polymerization of beneficial plant height QTLs to develop superior lines which can achieving hybrid performance levels
Molecular Breeding (2025)
-
A high-performance computational workflow to accelerate GATK SNP detection across a 25-genome dataset
BMC Biology (2024)
-
Transcription factor encoding gene OsC1 regulates leaf sheath color through anthocyanidin metabolism in Oryza rufipogon and Oryza sativa
BMC Plant Biology (2024)
-
Mass spectrometry-based proteomic landscape of rice reveals a post-transcriptional regulatory role of N6-methyladenosine
Nature Plants (2024)